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PROPAGATION OF ONE~-DIMENSIONAL ELASTOPLASTIC
WAVES IN SOILS

N. Mamadaliev and A. I. Yusupov UDC 539.374.534.1

In the present article, proceeding from stress—strain theory [1], we investigate the distribution of a
plane and a spherical wave in an elastoplastic medium. The stress—strain state of the medium is character~
ized by the displacement u(r, t), the strains ¢, < 9w/or, e = ey = w/r (e, = e,y = 0 in the planar case), and
the stresses opy, 0y =0gg. We show that either a shock wave or continuous loading —unloading waves can
occur in the medium (soil), depending on the forms of the constitutive functions o(g), oj(€;) in the theory of
[1]. The indicated waves in soils are investigated in the case 6 - (- wlelle, o, = (B, — fue,)e,, where oy, Bj (=
1, 2) are positive constant coefficients. The solutions of the problems are obtained by an inverse approach
[2, 3] with the geometry of the wave surface specified by a second-degree polynomial with respect to the time
t (for a shock wave) or the coordinate r (for an unloading wave). B is assumed that the unloading process of
the medium is irreversible and linear both with respect to the hydrostatic pressure ¢ with respect to the stress
intensity oj. The parameters of the medium, including the load profile, are calculated on a computer on the
basis of the derived analytical equations, and the results are presented as graphs of the components of the
stresses and particle velocity. We also analyze the case o; =0y, g;) With regard for possible wave effects
and the mutual influence of the first and second invariants of the stress or strain tensor. This study repre-
sents a continuation of [4] to the case where the strength characteristics of the medium are incorporated in
the analysis of the dynamics of transient processes.

We note that problems in the propagation of a plane and a spherical wave have been studied previously
by many authors, specifically in {5-14]. However, the soil and rock models used in those works differ con-
siderably from [1]. For example, stress—strain theory is used in [5, 14], the constitutive equations of plastic
flow [16] are used in [6~8], the theory of soil plasticity [17] is used in [9, 10], etc.

In contrast with {5-14], for our solution of the above-indicated problems we describe the motion and
state of the medium under dynamic loading by the equations of the stress—strain theory of soil plasticity [1],
demonstrate the existence of a plane unloading wave for a triaxial stressed state of the medium, and give de~
tailed comparisons of the parameters of an elastoplastic medium and a generalized "plastic gas." ‘We investi-~
gate the characteristic features of the propagation of a spherical wave in an elastoplastic medium and the be-
havior of its parameters for strong disturbances of an explosive nature.

1. Let an instantaneously initiated and then arbitrarily decaying load o,¢) act along the normal to some
plane. In this situation the equation of motion of the medium and the relations between the stresses and strains
[1] with regard for the unloading theorem of W'yushin [15] have the form

POUIOF == B0 /0, (1.1)
in loading Grr = (A 4 26)e, Ogg = Opp == e, A = ale — (29)ailes,
G = (1/3)0./e;, (1.2)
o == (o - aylelle, o = (B — Puesdey
in unloading

Orp — 0:,- = ()‘0 - 2(}0) (8 - 8*)1 (1.3)

: o , 2 ., 1 5.
Ogp — Oqg = ho (8 — €¥), Ao == By — 7 Ey, Gor= 5 [y,
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Fig. 1

where g, &;, 0, oy are the first and second invariants of the strain and stress tensors; E, and E, are the slopes
of the unloading branches [tangents of the angles of inclination of the respective curves o) and o (€) and the

e and g axes]; and g%, cr* O * are the strain and components of the stress at the start of unloadmg Sub-

stituting (1.2) into (1. 1) and maimg use of the relation g; ~{2/3)e (&> 0), we have

ooif":[(a,'juf—,ﬁ,)—z(aa_*ﬁ) ]"" (1.4)

att
It is evident from (1.4) that for (g = (8/27)B,) > 0 a shock wave r =R* t) propagates in the soil (Fig. 1a, curve 1)
with a velocity a, = {lo; + (4/NB, — 2{ay — (B/27)B)eVp,}'"* exceeding the longitudinal elastic wave velocity;
otherwise, for (o, —(8/27)8,) <0 centered loading waves propagate in the medium, where they are intercepted
above by the unloading wave t =f* (r) (Fig. 1b, curve 1), which forms the boundary of demarcation between the
regions of loading and unloading of the medium.

The case a2-(8/27)ﬁ2 =0 leads to the "degenerate™ elastic problem, whose solution is elementary.

We consider the case in which (@, ~(8/27)8,) > 0. It is assumed here that the medium unloads after the
shock front. The conditions at the shock front and at the boundary of the loading plane have the form

O = —pR*()*, u* = —R*()e,,, -5
R*(t) = dR*($)/dt, u* = du*/dt for r = R*(t);
O = —0o{t) for r=ry t>0. (1.6)

Inasmuch as the solution of the problem is formulated inversely, it is assumed that the velocity R* ¢) of propa-
gation of the front (shock waveform) is given, and in the course of solving the problem expression (1.6) is used
to determine the load profile g, ().

Let R be given; then at r=R* ¢) expression (1.5) has the form

0,52 (6) — (o, - & B)) .
&* (1) = — ( 9 )_7 11“_ = BE (1) &* (1). (1.7)
N 8 , at
(7 8]
Now, substituting (1.3) into (1.1), we obtain the equation
_(’inl‘ 0 %1 2 0s* () 1 (703 ()
(”2 = Ay } dy Ir + Fo' ar
where pa}=xg +2Gg; this equation admits the solution
w1y = fi{r—ayt) -+ f(r b oa,t) - pp j o (1) — poate® ()] dr 1.8)
o o o .

‘We note that if the equation r =R* ¢) holds and R* t) is represented in relation to r, then the strain £* and the
particle velocity du* /ot in (1.7) will be functions of the coordinate r. With the application of (1.7) the unknown
functions f; and f; have the form

Jmmw$ﬁﬁmm~%+%ﬁ]

fieg= 5 T (7 (£ ()]

{1 B e — l 1.9)

‘“‘ .384 N or J
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where F; ;) (=1, 2) is the root of the equation R* ¢) £a(t =z; in relation tot andthe prime denotes the deriva-~
tive with respect to the argument.
From (1.1), making use of (1.6), (1.8), and (1.9), we obtain an equation for determining the load profile:
ﬂ*’h
UL L0 O (1.10)

Tﬂ_
On the basis of (1.8) and (1.10) we have carried out calculations for a specific form of R* ¢).

For [a,— (8/27)B,] <0 the perturbed zone inthe (r, t) plane is partitioned into regions of loading (I) and
unloading (1) of the medium (see Fig. 1b), and they are demarcated by the unloading wave surface t =f*(r).
In the region of active deformation in the soil after the shock front r = at, where a == (2, + (49)f,)p, (carve2),
centered Riemann waves propagate, which are closed by aregion of constant parameters nearthe boundary of the
loading plane. In the given situation the problem is solved for a stepped load. Since the curves o(c) and o; (€;)
do not have elastic intervals, the displacement and strain of the medium have zerovalues rather than discon-
tinuities at the front r =at.

To formulate a solution of this problem we introduce the self-similar variable £ =r/t, whereupon we ob-
tain from (1.4)

Loduy 4 8 T ae .
W o 1) 2 (e )] 2 -

d*—

dudE - Ede/d = O {uy == du/ot).

Next, setting the determinant of the homogeneous system (1.11) equal to zero, we have

(49 I’ —--2(‘0.2 —(827) ﬁ‘g) e (1.12)

\_ﬁ"//\l’ .

o

Now, with regard for (1.12), the particular solutions of the system (1.11) acquire the form

g2l R
e G L () (1.13)
2 (ot,g - 57 [52‘} 3 (\C/.i - 5T B-:)

where pfi = (z, 4 (4/9)p,). The condition oy, =~y =const at ¢ =¢ enables us to determine the boundary of the
region in which centered waves propagate in the soil; its equation is written in the form

2 a- % (O‘z ’ -87 Bz\)
Sk & i 1. .
(eo50/2)°
The problem in the unloading region II (Fig. 1b) is reducible to the determination of the functions f; and
f, of expression (1.8) and the unloading waveform t =f* (r) with satisfaction of (1.6)and the condition

Gudr = (), dulot s OuFl for t = JE(r), {1.14)
where ¥ (r), du*/dt are known functions given by (1.13).
We note that (1.6) can be replaced by the strain condition, namely that forr =rj, t=0;
Qudr = g (t). (1.15)

Then, substituting (1.8) into (1.14) and (1.15) and carrying out suitable transformations, we obtain a system of
equations in f2’ and f* () of the form

LA . ”* (T ) RS % (g
Pl a2 ) = falier, =y 1 e+ Ty T SO
-“')au ) o (1.186)
, ;o » ar N R AR N
T {f: [rotoa /" 0+ Ja U@y = 7)1 a 7% ()] — i)rj\l-“) + g (ry) - gy [Lﬂ-“)“r'”~———j} = UU'*:
. LT s 0 .
From (1.16), eliminating fz" we obtain
% (1) s—rey N | N (Fie) (=) o i
(0 +go( . 0 ] _ ?Z o i ) + ( L (Fs {_z))} =0, {1.17)
PO’I \ I} , i=1 | pono 0
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where F;@) (=1, 2) denctes the roots of the respective equations @ry~r) +ayf* (r) =z and r +a ,f* (r) =z in r.
Making use of the fact that the velocity and waveform of the unloading wave depend on the loading strain £* (r),
i.e., r/f *{) =aU(e*), we infer from (1.17) that if the distribution of remanent strains E(r) is known from ex~
periment, the relation € (r) =e*(r) ~o* (£ *)/E, is used to calculate £* (r) and then determine the unloading wave~
form, so that the strain distribution and then the stress distribution inthe loading plane can be determined by
means of (1.17).

Let us assume that the unloading wave form t=f* (r) is given, and let it be required to determine o)
in the course of solving the problem in region IT of the (r, t) plane. Now (1.14) takes the role of the boundary
conditions for finding the unknown functions f; and f, given in (1.8). Denocting by F; (¢;) the roots of the equation
rFaf*(r) = &; (i = 1, 2) in r, from (1.14) we find .

ray A [OLIFE)T 4 our
fiG) = 5 —“—‘é;:g——-:‘r: o o = [} (E@)}
Then for the determination of £,() we have
2 * i .
So(t)w—;- {0 [F(oj'(_i)at)) _:11) r?u F(ro—{“(-*-i)at)] rr( )+3*(r)
i=1 po ° Pacy o

From the strain g,t), taking (1.3) into account, we find the stress opp (g, t) and then the load profile o, ) =
~Opy Ty t).

2. Tnthe case of a spherical wave, for (a,~(8/27)8,) > 0 the solution of the equation of motion of the
medium

2 a2 ] .
_.._0?—@3 3__’1.\(__2.(7—:——%)+————0(r,2 , where
ot ar r Potg

0 () = 2= [t (1) — pugle* )] + 2 07 () — e () — 2G,e% (1), @-1)

subject to (1.7), has the following form when R* ) is given as an arbitrarily decaying time function:

Ifﬂaot THagt  B¥(Fy(s))-agFa(ke) 2.2)
u(r, b =4 j &, fcb B - | & [ e+ '
"o o
r+agt R*ii‘a(g'z)) r+agt R* (F,, (gq)) [P }'2*2 (F (E )) . (OL + iﬁ
v | ey (i(iz) dt, QadE — [ — il ) —
) 0 ¢ 7o QTO ) (a2 — T ﬁﬁ)
r—agt 13 ta ar? (1 4 é* () 0 I'i.*z (0) — 'A(Z -+ i i
L fa fogya ——— )[Os RERL lﬂ""
d o 9 L} (az— o7 ﬁﬁ)
ragt Eq R¥*(Py(&a)j—ayF2(Es) rogt *3 _ 40
- S‘o d&, Sdgg s‘ @ E,) &, — ;‘ dt, ‘ *(Fy (5, ))[ R (F‘z(gz)) (al +3 ﬁi)] i, +
o "o ) o % (“2 - -:.?7‘ ﬁ-.')
:+r.ot ‘?' R* (F (2, R*(Fa(Zs)) . , A . 4 . .
sl a [ plEa | e —sutmy | 00 & T i | R @
= Yo Yo 8 s

where

D (2)) = ! — {[R (F (zl))(i +
2{ay—B*(F ()] (a2 -7 ﬁ-}

TPLACYC) I MJ (oo (@) — (o + Ba)]| + 200 (B (a) B (P, ) B (7, )
0o o
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R*(F1(21))
| !

R*(F, (3,)) R¥ (F, (2,)) Q [R* (F, (,)
I ( 1 o) ?j-v

2a,— R (F ()] (by + 26,)

the functions F;(zi) (=1, 2) are the roots of the equations R* ¢) zait =z int.

Differentiating (2.2) with respect tot and r, we determine the particle velocity i(r, t) and the strain e(r, t),
and then on the basis of (1.3) we find the stress components oy, T+ In determining Q (r), however, as in the
case of a plane wave, we must express the strain £* at the shock front as a function of r. To do so we need to
solve the equation r =R* ¢) for t and substitute the result into (1.7). We then obtain £* {r) and, making use of

1.2) and @.1), find cr;r(r), O'*W {r) and Q).

In the case (&, —(8/27)5;)< 0 the behavior of the spherical problem in the loading region I (Fig. 1b} differs
from the plane case in that the problem is not self-similar, the centered waves in the soil turn out to be curvi~
linear, and the parameters of the medium along their surface are variables. Analytical procedures are there~
fore unsuitable for obtaining simple solutions of the problem. Accordingly, to solve the spherical problem in
the loading zone, as in [2, 14], we use the method of characteristics. Below, we analyze the plastic stress—
strain state of the medium after the unloading wave front (Fig. 1b) in region II in the same way as in Sec. 1.
‘We shall not write out the cumbersome analytical solutions. ‘

3. Experimental studies [18-22] of the mechanical properties of soils undertriaxial compression condi-
tions at an elevated stress level evince the validity of the deformation equation o =0j (e, €;}s in the majority of
situations, whereas the relationship between ¢ and & is autonomous. In unloading, the interactions of the in~
variants o, oi, &, g{ are slight, and so c=0(, £*, o*), 0y ~05(€{, € ’{‘, G-l*), where the starred parameters corre-
spond to the start of unloading. An investigation of the nature of waves in soils with suitable approximations of
gi = ( &, £{), in particular for oj =30 (yg{— 'yze%), shows that a shock wave occurs in the zone of active loading of
the soil,

In this case, solving the inverse problem for determining the deformation eXt) on a shcok-wave front,
we obtain a transcendental equation — in particular, a 3rd-degree polynomial, which is solved numerically
using a standard procedure. The solutions in the discharge region are the same as in Secs. 1 and 2, so we do
not repeat them here, :

4. We have carried out calculations for the cases in which the geometry of the surfaces of the shock
wave and unloading wave are specified in the form of second-degree polynomials: ’

R*(t) = ry -+ Ryt — (R,/2)82, R*(t) > 0; ' @.1)
F*(0) = Bo(r — 1o) — (BY2)(r — ro)%, 1*(r) > 0 “.2)
and the initial parameters of the medium have the values
po=0.02 - 10* kg-sec’/m*,6,(0) = 105 - 10* kg/m?% 1o =0.1m, ' @.3)
R, =420m/sec R, =2 -10°R,, B, =0.2927 - 10~2sec/m B, =2 - 10~'B,:
oy = 12.127-10° kg/m? @, = 58.73-107 kg/m” @.4)

By = 35.83-10°kg/m?, B, = 11.64-108 kg/m?, B, = 14.107 kg/m?,
E, = 2.107 kg/m?

The results of computer calculations are shown in Figs. 2~5 in the form of curves of the stresses, particle
velocity, and load as a function of the time in the cross sections r=0.1, 0.2 and at the shock front r=R* t).
The solid curves in Figs. 2-4 refer to the case of a plane shock wave propagating in an elastoplastic soil
for (4.3) and (4.4); the dashed curves with crosses refer to the case 8, = ~11.64 + 10® kg/m?, corresponding to
the "shock™ curve oj =0 (€;); and the plain dashed curves correspond to a generalized plastic gas [4].

In the case of the generation of a plane unloading wave in soil, i.e., for 8, =28.75 - 107 kg/m?, the variation
of the load profile gy &) is shown in Fig. 5. It is evident from Fig. 2 that in the inverse problem the profile of
the unknown load oy ¢) on the chamber r=0.1 in the case of a generalized plastic gas varies slowly with t in
comparison with the theory of elastoplastic deformations. This is because the medium is compressed from
- all sides with uniform pressure when the problem is analyzed on the basis of the generaiized plastic gas model,
whereas withapplication of the dynamical theory of plasticity opp> Tp @ =0gg, and so the process of decay of T, (t)is
comparatively rapidinthe latter case, The curve g, (t) for dai/ de; > 0, dzcri/ dszi >0 passes between the curves oy(t)
calculated for dzori/ds?l<0 and on the basis of an ideal medium and is situated close tothe curve oo(f) for the
generalized plastic. The curves of the stress o ,,, being monotonically decreasing time functions, become
tensile for t =0.086 -107° sec (d0;/de}<0) and t=0.164-107° (doy/de? > 0).
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The behavior of the particle velocity i as a function of t turns out to be very nearly similar in all of the
cases investigated above and has a decaying trend. The overall decrease of i in the vicinity of the shock front
in the region of unloading of the medium subjected to elastoplastic deformations is greater than in the plastic
gas. However, the value of i is a maximum for the plastic gas case.

The qualitative pattern of the variation of the parameters Opps O Qo tat r =0.2 (Fig. 3) is similar to the
case r =0.1 with allowance for their quantitative values and the arrival time of the wave at a given point.

*
Unlike the region of unloading of the medium at the shock front r =R* ¢), the stresses Opps U;¢ and the
particle velocity u* vary roughly linearly with t. This is because the wave velocity R* &) is specified in the
calculations as a linearly decreasing function of the time.

The investigation has shown that in order to obtain the same load on the chamber in elastoplastic and ideal
media it is necessary that the nature of the variation (decrease) of R* ) in the elastoplastlc medium be mild
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and protracted, and so the stress field will have a prolonged destructive force and anelongated wave pattern
in comparison with the ideal medium. When the "shock diagrams™ of the medium are used, despite the fact
that the profiles o) for the elastoplastic and ideal media do not differ appreciably, their velocities in the
unloading region and along the shock front will differ considerably.

Figure 5 shows the load profile oy ) obtained from the solution of the problem when the plane unloading
wave given by Eq. 4.2} is generated in soil. Here the solid, dashed, and dot-dash curves correspond to rela-
tions between the coefficients of ¢4.2) B,=2" 107B,, B =8" 10'1B0, and Bj=4- 10"1B0. Also, the dashed curves
with crosses and circles are plotted for the cases Ey =7 - 107 kg/m?® and E,=16-10" kg/m? (B;=4-107'By). &
is evident from these curves that the curvature of the load profile is directly proportional to that of the un~
loading wave #.2), i.e., the curve oyt) is steeper for a larger ratio (stronger coupling) between B; and Bj.
With a reduction in the Young's modulus E; the load and the time of its action on the chamber are decreased
accordingly, whereas in the case of shock propagation [4] the reverse is true. The same pattern is observed
when the Young's modulus E, is varied. However, the effect of E, on o) isnot as pronounced as that of E;.

We note that similar studies involving an analysis of the structure and classification of one~dimensional
{plane and spherical) waves in solids can be carried out for any approximation of the constitutive functions
a(g), oj€q); 03(€, £;) in the stress—strain theory of plasticity.

The authors are grateful to Kh. A. Rakhmatulin for a discussion of the results.
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